5-Azacytidine suppresses EC9706 cell proliferation and metastasis by upregulating the expression of SOX17 and CDH1
نویسندگان
چکیده
5-Azacytidine is a well-known anticancer drug that is clinically used in the treatment of breast cancer, melanoma and colon cancer. It has been reported that 5-azacytidine suppresses the biological behavior of esophageal cancer cells. However, corresponding mechanisms remain unclear. In this study, using Transwell invasion and cell proliferation assays, we demonstrated that 5-azacytidine significantly inhibited the metastasis and proliferation of EC9706 cells, and upregulated the expression of cadherin 1 (CDH1) and SRY-box containing gene 17 (SOX17). Moreover, the inhibition of the metastasis of the 5-azacytidine-treated EC9706 cells was impaired following transfection with siRNA targeting CDH1 (CDH1 siRNA), and the inhibition of cell proliferation was attenuated following the downregulation of SOX17 by siRNA targeting SOX17 (SOX17 siRNA). Furthermore, 5-azacytidine remarkably reduced the CDH1 and SOX17 promoter methylation levels, suggesting that 5-azacytidine upregulates the expression of SOX17 and CDH1 by inhibiting the methylation of the SOX17 and CDH1 promoter. The findings of our study confirm that 5-azacytidine suppresses the proliferation and metastasis of EC9706 esophageal cancer cells by upregulating the expression of CDH1 and SOX17. The expression levels of CDH1 and SOX17 negatively correlate with the promoter methylation levels. CDH1 and SOX17 are potential indicators of the clinical application of 5-azacytidine.
منابع مشابه
P-219: The Role of E-Cadherin Coding Gene (CDH1) in Pathogenesis of Endometriosis
Background: Endometriosis, a gyncological disorder,benign and common cause of infertility, is defined as the presence of endometrial glands and stroma at ectopic locations outside the uterine cavity. Clinical observations have led to the assessment that endometriosis is an invasive disease. Abnormal expression of adhesion molecules such as cadherins is likely to be an important determinant of l...
متن کاملGlycyrrhetinic Acid Induces Apoptosis in Leukemic HL60 Cells Through Upregulating of CD95/ CD178
Acute leukemia is characterized by the accumulation of neoplastic cells in the bone marrow and peripheral blood. Currently, chemotherapy and differentiating agents have been used for the treatment of leukemia. Recently, plant extracts, either alone or in combination with chemo agents, have been proposed to be used for the treatment of cancers. The aim of the present research was to study the cy...
متن کاملMiR-493 suppresses the proliferation and invasion of gastric cancer cells by targeting RhoC
Objective(s):MiRNAs have been proposed to be key regulators of tumorigenesis, progression and metastasis. However, their effect and prognostic value in gastric cancer is still poorly known. Materials and Methods: Gastric cancer cell lines were cultured. Tissue samples obtained from 36 gastric cancer patients were used for quantitative real-time PCR (qRT-PCR) analysis. The tissue microarrays (T...
متن کاملبررسی بیان پروتئینهای P16 و DAPK در ردهی سلولی لوسمیک HL60 در مجاورت با آلکالوئید گیاهی
Introduction: Epigenetic changes such as promoter methylation of tumor suppressor genes (TSGs) is one of the most important mechanisms involved in the development of hematologic malignancies. Harmine is one of the Harmal-derived alkaloids with anti-proliferatory effects on leukemia cell lines. Since P16 and DAPK genes are hypermethylated in some hematologic malignancies, the current study aimed...
متن کاملDownregulation of TMEM40 by miR-138-5p suppresses cell proliferation and mobility in clear cell renal cell carcinoma
Background: Clear cell renal cell carcinoma (ccRCC) represents approximately 70% of RCC,as the most frequent histological subtype of RCC. MiR-138-5p, a tumor-related microRNA (miRNA), has been reported to be implicated in the diverse types of human malignancies, but its role in ccRCCremains unclear. Objective: The study was designed to investigate the function...
متن کامل